
Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law 
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.
You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element. 
You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*last week we studied the effects of magnetic fields on charges and wires with 
current, today we learn how to produce magnetic fields



Magnetic Flux and Gauss’ Law for Magnetism

B

Define magnetic flux:

• in complete analogy to electric flux
• count number of magnetic field lines 

passing through a surface 
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magnetic flux passing through a surface is (proportional to)  
number of magnetic field lines that pass through it

if B is uniform and normal to surface  
B=BA.

if the surface is tilted, fewer lines cut 
the surface.

B
A

B



3



B




A

The “amount of surface” perpendicular 
to magnetic field is A cos .

A = A cos    so   B = BA = BA cos .

A is vector having a magnitude equal 
to surface area, in direction normal to 
surface.

Because A is perpendicular to surface, amount of A parallel to 
magnetic field is A cos .

ΦB = B ⋅ A
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If magnetic field is not uniform, or surface is not flat…

divide surface into 
infinitesimal surface 
elements and add flux 
through each…

dA
B

Φ𝐵 = lim
Δ𝐴𝑖→0

෍

𝑖

𝐵𝑖 ⋅ Δ Ԧ𝐴𝑖

Φ𝐵 = න𝐵 ⋅ 𝑑 Ԧ𝐴

definition of 
magnetic flux

(similar to the definition of 

electric flux) 
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If the surface is closed (completely encloses a volume)…

B

…we count lines going out 
as positive and lines going 
in as negative…

Φ𝐵 = ර𝐵 ⋅ 𝑑 Ԧ𝐴

dA
a surface integral, therefore a 
double integral ඵ

Recall: 
• field lines begin and end at charges (monopoles) 
• there are no magnetic monopoles in nature
• all field lines entering surface have to leave it again
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B

Therefore

Φ𝑀 = ර𝐵 ⋅ 𝑑 Ԧ𝐴 = 0

dA Gauss’ Law for Magnetism!

Gauss’ Law for magnetism is not very useful if we are 
considering stationary cases. 
The concept of magnetic flux is extremely useful, and will be 
used later, when the magnetic flux will change over time!

This law may require modification if the existence of 
magnetic monopoles is confirmed.
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You have now learned Gauss’s Law for both electricity and 
magnetism.

ර𝐸 ⋅ 𝑑 Ԧ𝐴 =
𝑞𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

𝜀𝑜

These equations can also be written in differential form:

∇ ⋅ 𝐸 =
𝜌

𝜀0

ර𝐵 ⋅ 𝑑 Ԧ𝐴 = 0

∇ ⋅ 𝐵 = 0

8

The magnetic field lines of a 
bar magnet form closed 
loops. Note that the net 
magnetic flux through a 

closed surface surrounding 
one of the poles (or any 

other closed surface) is zero. 
(The dashed line represents 

the intersection of the 
surface with the page.)



Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law 
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.
You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element. 
You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*last week we studied the effects of magnetic fields on charges, today we learn how 
to produce magnetic fields



+

B

r̂

r

v
B =

μ0

4π

qv × ොr

r2
.

0 is a constant, 0=4x10-7 T·m/A

Remember: 
r is unit vector from source point
(the thing that causes the field) 
to the field point P 
(location where the field is being 
measured).



Magnetic Field of a Moving Charged Particle

• moving charge creates 
magnetic field

P
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Detour: cross products of unit vectors

• need lots of cross products of unit vectors

Work out determinant:

Example: ( ) ( )( )

ˆˆ ˆ

ˆ ˆ ˆ ˆ

 
 

 −  
 
 

i j k

k j = det 0 0 1 = i 0 - -1 = i

0 -1 0

ˆˆ ˆi, j, k

Use right-hand rule:
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Detour: cross products of unit vectors

i  j  k  i  j  k

ˆˆ ˆi j=k

Cyclic property:

i  j  k  i  j  k

ˆˆ ˆj i =-k

“forward” “backward”

12



Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law 
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.
You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current 
Element. 
You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*last week we studied the effects of magnetic fields on charges, today we learn how 
to produce magnetic fields 13



• current I in infinitesimal length     of wire gives rise to 
magnetic field 

dB

r̂

r

dl

Biot-Savart Law

dB =
μ0

4π

I dℓ × ොr

r2

I

You may see the equation written using ˆr =r r .

Biot-Savart Law: magnetic field of a current element

d

dB

Derived by summing contributions 
of all charges in wire element
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B =
μ0

4π

qv × ොr

r2
.• moving charge creates magnetic field



Applying the Biot-Savart Law



I

ds

r

r̂



dB
dB =

μ0

4π

I dԦs × ොr

r2
 

dB =
μ0

4π

I ds sin θ

r2
 

B = නdB

Hint: if you have a tiny piece of a wire, just calculate dB; no need to integrate.

•P

dԦs × ොr = dԦs ොr  sin θ

= ds sin θ because ොr = 1
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Example: calculate the magnetic field at point P due to a thin 
straight wire of length L carrying a current I. (P is on the 
perpendicular bisector of the wire at distance a.)

dB =
μ0

4π

I dԦs × ොr

r2

dԦs × ොr = ds sinθ ෠k

dB =
μ0

4π

I ds sinθ

r2

ds is an infinitesimal quantity in the direction of dx, so

dB =
μ0

4π

I dx sinθ

r2

I

y

r

x

dB
P

ds

r̂

x

z


a

L

•
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r = x2 + a2sinθ =
a

r

I

y

r

x

dB
P

ds

r̂

x

z


dB =
μ0

4π

I dx sinθ

r2

a

dB =
μ0

4π

I dx a

r3
=

μ0

4π

I dx a

x2 + a2 3/2

B = න
−L/2

L/2 μ0

4π

I dx a

x2 + a2 3/2

B =
μ0I a

4π
න

−L/2

L/2 dx

x2 + a2 3/2

L
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I

y

r

x

dB
P

ds

r̂

x

z


a

B =
μ0I a

4π
න

−L/2

L/2 dx

x2 + a2 3/2

look integral up in tables, use the 
web,or use trig substitutions

න
dx

x2 + a2 3/2
=

x

a2 x2 + a2 1/2

B =
μ0I a

4π
ቤ

x

a2 x2 + a2 1/2
−L/2

L/2

=
μ0I a

4π

L/2

a2 L/2 2 + a2 1/2
−

−L/2

a2 −L/2 2 + a2 1/2

L
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http://www.efunda.com/math/integrals/integrals.cfm


I

y

r

x

dB
P

ds

r̂

x

z


a

B =
μ0I a

4π

2L/2

a2 L2/4 + a2 1/2

B =
μ0I L

4πa

1

L2/4 + a2 1/2

B =
μ0I L

2πa

1

L2 + 4a2

B =
μ0I 

2πa

1

1 +
4a2

L2

L
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I

y

r

x

dB
P

ds

r̂

x

z


a B =
μ0I 

2πa

1

1 +
4a2

L2

When L→, B =
μ0I 

2πa
.

L
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magnetic field around a long, straight wire 



I

B

r

Magnetic Field of a Long Straight Wire

It is possible to derived the equation for the 
magnetic field around a long, straight* wire 
using Biot-Savart law…(see previous slides)

B =
μ0 I

2πr

…with a direction given by a “new” right-
hand rule.

*Don’t use this equation unless you have a long, straight wire!

r is shortest (perpendicular) distance 
between field point and wire

21

We will find soon this relation making use of the 
Ampere’s Law!



Looking “down” along the wire:

I
B• magnetic field is not constant

• at fixed distance r from wire,  
   magnitude of field is constant 
   (but vector magnetic field is not uniform).

• magnetic field direction is a tangent to imaginary circles 
around wire
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Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law 
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.
You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element. 
You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*last week we studied the effects of magnetic fields on charges, today we learn how 
to produce magnetic fields



Magnetic Field of a Current-Carrying Wire

It is experimentally observed that parallel wires exert forces on 
each other when current flows.

I1 I2



F12 F21

I1 I2



F12 F21

DEMO

https://auditoires-

physique.epfl.ch/

experiment/592/f

orce-entre-deux-

conducteurs-

paralleles-exp-

dampere
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Example: use the expression for B due to a current-carrying 
wire to calculate the force between two current-carrying wires.

I1 I2



F12

d

L

B2 =
μ0 I2

2πd
෠k

F12 = I1L1 × B2

L2L1

B2

F12 = I1L Ƹj ×
μ0 I2

2πd
෠k

F12 =
μ0 I1I2L

2πd
Ƹi

force per unit length of wire i:
F12

L
=

μ0 I1I2

2πd
Ƹi.

x, Ƹi

y, Ƹj

z, ෠k

Force on wire 1 produced by wire 2
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I1 I2



F12 F21

d

L
B1 = −

μ0 I1

2πd
෠k

F21 = I2L2 × B1

L2L1

B1

F21 = I2L Ƹj × −
μ0 I1

2πd
෠k

F21 = −
μ0 I1I2L

2πd
Ƹi

The force per unit length of wire is
F21

L
= −

μ0 I1I2

2πd
Ƹi.

B

Force on wire 2 produced by wire 1

26

x, Ƹi

y, Ƹj

z, ෠k



Analogously:
If currents are in opposite directions, force is repulsive.

I1 I2



F12 F21

d

L

L2L1

F12 = F21 =
μ0 I1I2L

2πd

F12 = F21 =
4π × 10−7I1I2L

2πd

= 2 × 10−7I1I2

L

d

27

x, Ƹi

y, Ƹj

z, ෠k



Note: experience used to define the Ampere [A]

Official definition of the Ampere:

1 A is the current that produces a force of 
2x10-7 N per meter of length between two 
long parallel wires placed 1 meter apart in 

empty space.

A mechanical 

measurement can 

be used to 

standardize the 

ampere.
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Today’s agenda:

Ampere’s Law.
You must be able to use Ampere’s Law to calculate the magnetic field for high-symmetry 
current configurations.

Solenoids.
You must be able to use Ampere’s Law to calculate the magnetic field of solenoids and 
toroids. 
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I

B

rLine integral of B over a closed circular 
path around wire:

ds

රB ⋅ dԦs = B රds = B 2πr

B ∥ dԦs

රB ⋅ dԦs =
μ0 I

2πr
2πr = μ0 I

Is this an accident, valid only for this particular situation?
NO! This is a GENERAL RESULT!

Recall:

• magnetic field of long straight wire:

  winds around the wireB =
μ0 I

2πr
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රB ⋅ dԦs = μ0 Iencl Ampere’s Law

• Iencl is total current that passes through surface bounded by  
closed path of integration.

• law of nature: holds for any closed path and any current 
distribution

I

B

r

ds

• current I counts positive if integration direction is the same 
as the direction of B from the right hand rule

I

B

r

ds
positive I negative I

Ampere’s Law
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I1

ds

• if path includes more than one source of current, add all  
currents (with correct sign).

I2

රB ⋅ dԦs = μ0 I1 − I2

• Ampere’s law can be used to calculate magnetic fields 
in high-symmetry situations
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7.338.33

Ampère’s law relates the 

magnetic field around a 

closed loop (Amperian 

curve) to the total current 

flowing through the surface 

enclosed by the loop:

Ampère’s Law

Using Ampère’s law to find the 

field around a long straight wire:

Use a circular path 

with the wire at the center; 

then B is tangent 

to dll at every point. 

The integral 

then gives: so B = μ0I/2πr

with direction and orientation 

given by the right-hand rule 

  
2prB = m

0
I

Sometimes the infinitesimal element in the path 

integral 𝑑 Ԧ𝑠 is also indicated as



Recipe for using Ampere’s law to find magnetic fields

• requires high-symmetry situations so that line integral 
can be disentangled

• analogous to Gauss’ law calculations for electric field

1. Use symmetry to find direction of magnetic field

2. Choose Amperian path such that 
 (a) it respects the symmetry, usually 
 (b) and goes through point of interest

B||ds

3. Start from Amperes law, perform integration, solve for B
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Example: a cylindrical wire of radius R carries a current I 
that is uniformly distributed over the wire’s cross section. 
Calculate the magnetic field inside and outside the wire.

I

R
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R

r

direction of I

B

Outside the wire:

රB ⋅ dԦs = B රds = 2πrB = μ0 I

B =
μ0 I

2πr
a lot easier than using 
Biot-Savart Law!

Example: a cylindrical wire of radius R carries a current I 
that is uniformly distributed over the wire’s cross section. 
Calculate the magnetic field inside and outside the wire.

1. B field tangential to circles around wire

P

2. Chose circular Amperian path 
around wire through P

3. Integrate:
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Example: a cylindrical wire of radius R carries a current I 
that is uniformly distributed over the wire’s cross section. 
Calculate the magnetic field inside and outside the wire.

• Only part of current enclosed by Amperian path

R
r

direction of I

B

Inside the wire:

P

Iencl = I
A enclosed by r

A enclosed by R
= I

πr2

πR2
= I

r2

R2

රB ⋅ dԦs = B රds = 2πrB = μ0 Iencl = μ0 I
r2

R2

B = μ0 I
r2

2πrR2
= μ0 I

r

2πR2
=

μ0 I

2πR2
r

Ampere’s law:

Solve for B:
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B

rR

Plot:
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Calculating Electric and Magnetic Fields

Electric Field

in general: Coulomb’s Law

for high symmetry 
configurations: Gauss’ Law

(surface integral)

Magnetic Field

in general: Biot-Savart Law

for high symmetry 
configurations: Ampere’s Law

(line integral)

This analogy is rather flawed because Ampere’s Law is not 
really the “Gauss’ Law of magnetism.”
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Today’s agenda:

Ampere’s Law.
You must be able to use Ampere’s Law to calculate the magnetic field for high-symmetry 
current configurations.

Solenoids.
You must be able to use Ampere’s Law to calculate the magnetic field of solenoids and 
toroids. You must be able to use the magnetic field equations derived with Ampere’s Law 
to make numerical magnetic field calculations for solenoids and toroids.
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Magnetic Field of a Solenoid

A solenoid is made of many loops of wire, packed closely to 
form long cylinder. 

Single loop:

41

Note the similarity between magnetic 
field lines surrounding a current loop 

and that of a bar magnet.



Stack many loops to make a solenoid:

Ought to remind you of the 
magnetic field of a bar magnet.

42

The magnetic field 
lines for a loosely 
wound solenoid.



Use Ampere’s law to calculate the magnetic field of a solenoid:

           

           

B

I








රB ⋅ dԦs = න

1

B ⋅ dԦs + න

2

B ⋅ dԦs + න

3

B ⋅ dԦs + න

4

B ⋅ dԦs

l

රB ⋅ dԦs =  Bℓ +  0 +  0 +  0 =  μ0 Ienclosed

Bℓ =  μ0 N I
N is the number of loops 
enclosed by our surface.

43



           

           

B

I








l

B =  μ0

N

ℓ
 I Magnetic field of a solenoid of 

length l , N loops, current I. 
n=N/l (number of turns per 
unit length).B =  μ0 n I

The magnetic field inside a long solenoid does not depend on the position 
inside the solenoid (if end effects are neglected).
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A toroid* is just a solenoid “hooked up” to itself.

රB ⋅ dԦs = B නds = B 2πr

රB ⋅ dԦs =  μ0 Ienclosed =  μ0 N I

B 2πr =  μ0 N I

B =
μ0 N I

2πr

Magnetic field 
inside a toroid of N 
loops, current I. 

The magnetic field inside a toroid 
is not subject to end effects, but 
is not constant inside (because it 
depends on r).

Some texts call this also as “toroidal solenoid.”

B
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B =  μ0

N

ℓ
 I 

B =  4π × 10−7
T ⋅ m

A

400

0.1 m
 2 A  

 B =   0.01  T 

Example: a thin 10-cm long solenoid has a total of 400 turns of 
wire and carries a current of 2 A.  Calculate the magnetic field 
inside near the center.
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“Help! Too many similar starting equations!”

B =
μ0 I

2πr

long straight wire

B =  μ0

N

ℓ
 I

B =  μ0 n I

solenoid, length l, N turns

solenoid, n turns per unit length

B =
μ0 N I

2πr

toroid, N loops

use Ampere’s law (or note the lack of N)

field inside a solenoid is constant

field inside a solenoid is constant

field inside a toroid depends on position (r)

47

You can easily derive them using Ampere’s Law



7.488.48

Ferromagnetic materials are those that can 

become strongly magnetized, (iron, nickel)

These materials are made up of tiny 

crystalloid regions called domains (less than 

100 nm in size); the magnetic field in each 

domain is in a single direction.

Magnetic Materials – Ferromagnetism

When the material is non-magnetized, the 

domains are randomly oriented. They can 

be partially or fully aligned by placing the 

material in an external magnetic field.

Computer 

hard drive

domains

Magnetism in Matter



7.498.49

Origin of Ferromagnetism

F.M. originates from quantum nature of electron motion

Electron is a rotating charge => 

current =>  Magnetic Dipole (spin)

In some atoms the outer electrons 

are aligned parallel => MFs add => 

 MF of atom

In some materials atoms within a 

domain  tend to align too (QM effect) 

=> MFs add making MF of a domain:

Magnetism in Matter



7.508.50

Origin of Ferromagnetism

• The atoms of Fe, Co and Ni (and rare 

earths) are little magnets: in the 

incompletely filled shell of electrons, 

the electron spins line up—and 

electrons are themselves magnets.  

• Only some of the open shell atoms 

and in specific crystal forms 

energetically prefer alignment with 

their neighbors.  

• All this alignments are fully explained 

by quantum mechanics (and cannot 

be explained otherwise).

✓  
✓  
✓  

Magnetism in Matter



7.518.51

Molecules of paramagnetic materials have a small intrinsic magnetic dipole moment, and they tend to 

align somewhat with an external magnetic field, increasing it.

Molecules of diamagnetic materials have no intrinsic magnetic dipole moment; an external field 

induces a small dipole moment, but in such a way that the total field is slightly decreased.

Paramagnetic μ ≥ μ0       Diamagnetic μ ≤ μ0

         Characterized by magnetic susceptibility
χm = μ/μ0 – 1.

Paramagnetism and Diamagnetism

Magnetism in Matter



7.528.52

Summary of Lecture 8 

• Strong permanent magnets are made 

of ferromagnetic materials with   :

•  Magnetic field inside a solenoid:

   
B = m

0
nI , n =

N

ℓ

• Current creates magnetic field:

 (Amper’s law)

  
B =

m
0

2p

I

r

• Magnetic field of a long, straight 

current-carrying wire:
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