Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.

You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element.

You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*last week we studied the effects of magnetic fields on charges and wires with
current, today we learn how to produce magnetic fields



Magnetic Flux and Gauss’ Law for Magnetism

Define magnetic flux:

 in complete analogy to electric flux
« count number of magnetic field lines
passing through a surface
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magnetic flux passing through a surface is (proportional to)
number of magnetic field lines that pass through it
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if B is uniform and normal to surface A S
dg=BA.
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A is vector having a magnitude equal

to surface area, in direction normal to
surface.

The "amount of surface” perpendicular
to magnetic field is Acos®o.

Because A is perpendicular to surface, amount of A paraIIeT to
magnetic field is Acos®o.

A =AcosB® so @g=BA = BA coso.
(DB :§K



If magnetic field is not uniform, or surface is not flat...

Jan .

divide surface into
infinitesimal surface
elements and add flux
through each...

(DB = AIA{{EO | Bi . AAl
l

definition of

magnetic flux
(similar to the definition of

electric flux)



If the surface is closed (completely encloses a volume)...

> ...we count lines going out
as positive and lines going
in as negative...

> a surface integral, therefore a
double integral ﬂ

Recall:

e field lines begin and end at charges (monopoles)

e there are no magnetic monopoles in nature

e all field lines entering surface have to leave it again



Therefore

G\_A‘dA Gauss’ Law for Magnetism!

This law may require modification if the existence of
magnetic monopoles is confirmed.

Gauss’ Law for magnetism is not very useful if we are
considering stationary cases.

The concept of magnetic flux is extremely useful, and will be
used later, when the magnetic flux will change over time!



You have now learned Gauss’s Law for both electricity and
magnetism.

=t ra Uenclosed . .
E-dAd=— jéB-dA=O
o
These equations can also be written in differential form:
— = p — —
V-E=~ V-B=0
0

\\ N // The magnetic field lines of a

bar magnet form closed
loops. Note that the net
magnetic flux through a
closed surface surrounding
one of the poles (or any
other closed surface) is zero.
(The dashed line represents
the intersection of the
surface with the page.)
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Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.

You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element.

You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*|ast week we studied the effects of magnetic fields on charges, today we learn how
to produce magnetic fields



Magnetic Field of a Moving Charged Particle

e moving charge creates
magnetic field

o qV X T

B =
4t r?

L is a constant, u,=4nx107 T-m/A

Remember:

' is unit vector from source point
(the thing that causes the field)
to the field point P

(location where the field is being
measured).
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Detour: cross products of unit vectors
» need lots of cross products of unit vectors i, j, k

Work out determinant:

Example: kx(—ﬁ) = det

Use right-hand rule:




Detour: cross products of unit vectors

Cyclic property:

“forward” “backward”
i _3 Kijk i jKijk
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Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.

You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current
Element.

You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.
You must be able to calculate forces between current-carrying conductors

*|ast week we studied the effects of magnetic fields on charges, today we learn how
to produce magnetic fields 13



Biot-Savart Law: magnetic field of a current element

e moving charge creates magnetic field |5 _ Ho 4V X 1y

e current I in infinitesimal length d/ of wire gives rise to
magnetic field dB

r/,’/ —
/ — I df X r
<d\BA dB = 10 d

/Iv Biot-Savart Law
et

Derived by summing contributions
dl of all charges in wire element

N

You may see the equation written using r =rr.
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Applying the Biot-Savart Law

|ds x | = |ds]| |F| sin 6

= dssin® because |[T| =1

Wo I ds sin O
dB = .
4t T
B = j dB
| Hint: if you have a tiny piece of a wire, just calculate dB; no need to integrate. |
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GURIOSITY
Example: calculate the magnetic field at point P due to a thin

straight wire of length L carrying a current I. (P is on the

perpendicular bisector of the wire at distance a.)

P :
_\t?)dB d—B>=uOIds><r
ro 4t r?
/i )
P A ds X t = ds sin@ k
R S X
EdS Z -3 4B — Uy I ds sinB
*X ___________ R C4m r?
L

ds is an infinitesimal quantity in the direction of dx, so

_ Mo I'dx sinB

dB
4t r?
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CURIOSITY

Sin® = - r = /Xz + 52 dB = Mo [ dx sin©
t 4 r?
A
P Qi)dB dBZHOIdvaHO [dx a
e 4t r3 4w (x2 + a?2)3/2
S a
I 6\\\“ Ci} X B B jL/Z l»l() Idxa
ds 'z B L2 4T (x? + a2)3/2
e
- B — m aJL/Z dx
 4m L2 (x2 + a2)3/2
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CURIOSITY

ry B:”"IaJL/Z dx
P—\é)dB 4t )y, (x2 + a2)3/2
| . .
/i look integral up in tables, use the
: 6 § web,or use trig substitutions
N X
----- g e S
o _I’ (x2 + a2)3/2 ~ a2(x2 + a2)1/2
€--------=--- I—_ ----------- >
B — Wl a X L/2
o 2 (2 2)1/2
At a%(x2 + a2)V/ L2
~ Mola L/2 —L/2
4T a2((L/2)2 + a2)1/2 a2((—L/2)2 + a2)1/2
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http://www.efunda.com/math/integrals/integrals.cfm

CURIOSITY

o _ Mola 2L/2
4w |a%(12/4 + a2)l/2
B — Wol L 1
~ 4ma (12/4 + a?)1/2
B — Wol L 1
 2ma /12 + 4a?
I 1
B = e T
4a
\/ L+ 1z

19



GURIOSITY

P—
/Q)dB
ro
Joa B — Mol 1
. 2Tta 2
e~ . X \/1 + %
X
L
When Low, B = E
2Ta

magnetic field around a long, straight wire

20



Magnetic Field of a Long Straight Wire

It is possible to derived the equation for the
magnetic field around a long, straight* wire 11
using Biot-Savart law...(see previous slides)

B = ”LI r is shortest (perpendicular) distance B
2Tr between field point and wire

We will find soon this relation making use of the

Ampere’s Law!
I
...with a direction given by a “"new” right-
B

hand rule.

| *Don’t use this equation unless you have a long, straight wire! ]1




Looking “down"” along the wire: N
/ g I \\\
« magnetic field is not constant ] ! @1\, TB
1\\\ t\\n.;; /'I
- at fixed distance r from wire, )
Te - ——p

magnitude of field is constant
(but vector magnetic field is not uniform).

« magnetic field direction is a tangent to imaginary circles
around wire

22



Today’s agenda - part I:

Magnetic Flux and Gauss’ Law for Magnetism.
You must be able to calculate magnetic flux and recognize the consequences of Gauss’ Law
for Magnetism.

Magnetic Fields Due To A Moving Charged Particle.

You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element.

You must be able to use the Biot-Savart Law to calculate the magnetic field of a current-
carrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.

You must be able to calculate forces between current-carrying conductors

*|ast week we studied the effects of magnetic fields on charges, today we learn how
to produce magnetic fields



Magnetic Field of a Current-Carrying Wire

It is experimentally observed that parallel wires exert forces on
each other when current flows.

— D —ay g
Fio  Fyu F1z F21
DEMO
(1 (2 https://auditoires- (1 (2
physique.epfl.ch/
experiment/592/f
orce-entre-deux-
conducteurs-

paralleles-exp-
dampere
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Example: use the expression for B due to a current-carrying
wire to calculate the force between two current-carrying wires.

;
R I, ~
Fi, = 1 L] X a ’k l—n

2md z, k X,1

- MolilaL,
F12 = 21d :

force per unit length of wirei: 7 = 54 '

25



Force on wire 2 produced by wire 1

o I1 ~
k
21d

§1=_

— Mo Il"
Foi =L LI X | — k
21 2 L] ( omd )

o 1111, Z,
— 1

F.. —
21 2md

The force per unit length of wire is

26



Analogously:
If currents are in opposite directions, force is repulsive.

A Td
Mo 111, L ‘ 1
F1z = Fa1 =504 b L
L —>
I:12 F21
4t X 10771, 1,1
Fi = Fp1 = omed )
=2x 107711, = ; 1 2
1lz2 3 ‘ o 0
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Note: experience used to define the Ampere [A]

A mechanical
measurement can
be used to
standardize the
ampere.

28
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Recall:

« magnetic field of long straight wire:

I . .
B = 20 winds around the wire

2Tr

Line integral of B over a closed circular
path around wire:

[ I
fB-dé’:B%ds:B(ZT[r) -0
1| 155 Gl s
B =g ) RS b= | | ot
C 7 () B ?“‘: 7’

= o Mo | ‘ ‘
B-ds=(—](@2nr) =u,l
j£ > (ZRI‘)( ) = Mo o o

Is this an accident, valid only for this particular situation?
NO! This is a GENERAL RESULT!

30



_jL_B) -ds = polancll Ampere’s Law
e I is total current that passes through surface bounded by
closed path of integration.

e law of nature: holds for any closed path and any current
distribution

e current I counts positive if integration direction is the same
as the direction of B from the right hand rule

1 1
positive T C_ - D negative I ©

B S B ds

<----oo--- > <----oo--- >

I I

31



e if path includes more than one source of current, add all
currents (with correct sign).
i

f_B)-d§=uo(11—lz) C 'j

‘Iz ds

« Ampere’s law can be used to calculate magnetic fields
in high-symmetry situations

32
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Ampere’ s Law

Sometimes the infinitesimal element in the path
integral ds is also indicated as d/l

Ampeére’s law relates the ¢ ﬁ . d_é = U El A
magnetic field around a 0 encl I
closed loop (Amperian loop

curve) to the total current
flowing through the surface

enclosed bT the loop: v N
! Using Ampere’s law to find the
field around a long straight wire: |
Use a circular path
with the wire at the center; D. .7 _ 11
iB df - ‘uOIencl
then B is tangent
¢ Bdl=Bdl=B(2mr)
Closed path made to dl at every point.
up of segments of | Area enclosed ? prB =m.]
length A{ by the path The integral 0
! then gives: so B = ,u0|/27ﬂ'

with direction and orientation

given by the right-hand rule
8.33



Recipe for using Ampere’s law to find magnetic fields

requires high-symmetry situations so that line integral
can be disentangled
analogous to Gauss’ law calculations for electric field

. Use symmetry to find direction of magnetic field

. Choose Amperian path such that
(a) it respects the symmetry, usually B || ds
(b) and goes through point of interest

. Start from Amperes law, perform integration, solve for B

34



Example: a cylindrical wire of radius R carries a current I
that is uniformly distributed over the wire’s cross section.
Calculate the magnetic field inside and outside the wire.

35



Example: a cylindrical wire of radius R carries a current I

that is uniformly distributed over the wire's cross section.
Calculate the magnetic field inside and outside the wire.

Outside the wire:

1. B field tangential to circles around wire

2. Chose circular Amperian path " ® direction-of I
around wire through P

3. Integrate:

fﬁ-o@

g — Ho I [a Iot easier than using B
2Tr Biot-Savart Law!

des = 21mrB = py 1

36



Example: a cylindrical wire of radius R carries a current I

that is uniformly distributed over the wire's cross section.
Calculate the magnetic field inside and outside the wire.

Inside the wire:

e Only part of current enclosed by Amperian path
(A enclosed by r) (rtr?) r?

= [— direction of I

I = |
encl = (A enclosed by R) (tR?) R2

Ampere’s law:
fB - ds = des = 2mrB = o lenc = Ho Iﬁ

Solve for B:
r? r o ol

= un | —
2mrR2 Ho 21tR? ZnRzr

B:uol

O)

37



A

Outside
the
wire

Bocl

r

direction of I

O,

v

e inside the wire:

Lol
B —
27 R?

- r

e outside the wire the answer is
the same as in the previous
exercise:

g _ bol
27r

e at r = R both solutions give
the same answer

38



Calculating Electric and Magnetic Fields

Electric Field Magnetic Field
in general: Coulomb’s Law in general: Biot-Savart Law
for high symmetry for high symmetry
configurations: Gauss’ Law configurations: Ampere's Law
(surface integral) (line integral)

This analogy is rather flawed because Ampere’s Law is not
really the “Gauss’ Law of magnetism.”

39






Magnetic Field of a Solenoid

A solenoid is made of many loops of wire, packed closely to

form long cylinder.

Single loop: \\i//
N
:: ....... | S
V /4\* * (a)
' | (

c)

—"‘—J“

— ’;‘;gﬂiggﬁ'd 5 Note the similarity between magnetic
current loop current field lines surrounding a current loop

and that of a bar magnet. 41



Stack many loops to make a solenoid:

g
[

T

—=

Ought to remind you of the
magnetic field of a bar magnet.

Exterior
The magnetic
field is
concentrated
into a nearly
uniform field
in the center
of a long
solenoid. The
field outside
Is weak and
divergent.

Interior

The magnetic field
lines for a loosely
wound solenoid.

42



DRI RX

<
B 0
< . — .
@@@p@@@@@;@@@I
® ..o ..°
D I it I ------------ »>

Use Ampere’s law to calculate the magnetic field of a solenoid:

fﬁ-c@:j§-d§+j§-d§+f§-d§+f§-d§

1 2 3 4

B-dé= B¢ + 0 + 0 4+ 0 = yglepclosed

N is the number of loops
enclosed by our surface.

43



DRI RX

<
B 0
< . — .
@@@p@@@@@;@@@I
® ..o .."°
D I it I ------------ »>
N

B= po— I Magnetic field of a solenoid of
v length |, N loops, current 1.

n=N/I (number of turns per
B= pgnl unit length).

The magnetic field inside a long solenoid does not depend on the position
inside the solenoid (if end effects are neglected).

44



A toroid* is just a solenoid “hooked up” to itself.

& Amperian loop
OO EE
@ O¥0)

¢_B>-d§ = Bjds = B(2mr)

B(2mr) = po N1

TRl | Magnetic field

inside a toroid of N
loops, current L.

The magnetic field inside a toroid
is not subject to end effects, but
is not constant inside (because it
depends on r).

Some texts call this also as “toroidal solenoid.”

45



Example: a thin 10-cm long solenoid has a total of 400 turns of

wire and carries a current of 2 A. Calculate the magnetic field
inside near the center.

_T-m\ (400)
B = (4n x 1077 — )(O.lm) (2 A)

[B= 0.01 T |

46



“Help! Too many similar starting equations!”

long straight wire
_ Hol

B=— I use Ampere’s law (or note the lack of N) I
2TIr

N solenoid, length |, N turns

B = Lo , I I field inside a solenoid is constant I
solenoid, n turns per unit length
B = Ho I I field inside a solenoid is constant I

u, N1 toroid, N loops

B = I field inside a toroid depends on position (r) I
2Tr

You can easily derive them using Ampere’s Law
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Magnetism in Matter

Magnetic Materials — Ferromagnetism

Ferromagnetic materials are those that can
become strongly magnetized, (iron, nickel)

These materials are made up of tiny
crystalloid regions called domains (less than
100 nm in size); the magnetic field in each
domain is in a single direction.

When the material is non-magnetized, the
domains are randomly oriented. They can
be partially or fully aligned by placing the
material in an external magnetic field.

g < 1
,N[ . 1 S _N
N —S N
4‘,// N N}_/_ A’“_Sg\*\[“,l “7-!‘;‘ PIL»"'\. ? ,I‘ )‘.ﬂ'v
- {" / &£ ) \g gN\ '|‘ N | &S !‘? N IS .
/i»«\s /N \\\ | / P §,’ S ._%_-. I NS N\!‘(
SN '@N/;u,m\—s,y_ LT NS
o ~ ,./“———iﬂ*{ﬁ_fu/sf'?\.N\‘ NS —=S N S | ¥ ,I‘
(T b y STy SN |
N T N Wl N s A N3 TS\
TR =" =1 4 i,
ne Ry %= 2N I e v
N SIS k7 ) N NGRS
/s/M\\\,‘;{/ b NLF T 1)
N ]

Computer .
hard drive &
domains
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Magnetism in Matter

Origin of Ferromagnetism

F.M. originates from quantum nature of electron motion

Electron is arotating charge =>
current => Magnetic Dipole (spin)

In some atoms the outer electrons

are aligned parallel => MFs add =>
MF of atom

In some materials atoms within a

domain tend to align too (QM effect)

=> MFs add making MF of a domain:

Hieldt)ieie)

8.49
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Magnetism in Matter

Origin of Ferromagnetism

« The atoms of Fe, Co and Ni (and rare
earths) are little magnets: in the
incompletely filled shell of electrons,
the electron spins line up—and
electrons are themselves magnets.

 Only some of the open shell atoms
and in specific crystal forms
energetically prefer alignment with
their neighbors.

« All this alignments are fully explained
by quantum mechanics (and cannot
be explained otherwise).

ise
“£T)
23V
24C|’
ZSMn
v 26Fe
v %7Co
v 28Ni
29C
302

3d
L 11|
Leitl [ [ |
LTiTiT] | |
Ltitfrlt]t]
LEiT{TItTiT]
FOTITITIT]
CUr AT ]It
FT T 7T

u [TUTATAT YTy
n [ITITITITY

o e o 3 s i
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Paramagnetism and Diamagnetism

Magnetism in Matter

Molecules of paramagnetic materials have a small intrinsic magnetic dipole moment, and they tend to
align somewhat with an external magnetic field, increasing it.

Molecules of diamagnetic materials have no intrinsic magnetic dipole moment; an external field
induces a small dipole moment, but in such a way that the total field is slightly decreased.

Paramagnetic u 2 u, Diamagnetic u < u,

Characterized by magnetic susceptibility

Im = plpo— 1.

TABLE 28-1 Paramagnetism and Diamagnetism: Magnetic Susceptibilities

Paramagnetic substance A Diamagnetic substance

Aluminum 2.3.x 107 Copper 9.8 x 107°
Calcium 1.9 X 107> Diamond —22 X 107°
Magnesium 12 % 10 Gold —3.6 X 107
Oxygen (STP) il Sl Lead ~-1.7 X 107
Platinum 2.9 X 1074 Nitrogen (STP) ~-5.0 x 107
Tungsten 6.5 <105 Silicon —42 x 107

8.51
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Summary of Lecture 8

* Current creates magnetic field: N
(Amper’s law) o 2 t .
§ B-dl= ‘uozlencl

loop
- Magnetic field of along, straight /{A\N_.

current-carrying wire: v
ying B /770 Ji U
B=—_
2P r
| x |
» Magnetic field inside a solenoid: ® : {
N . @ i
B=mmnl, n=— ; - {
f . B

- Strong permanent magnets are made
of ferromagnetic materials with p>> p,:

8.52
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